Lecture 1 - What is SE?

Monday, September 26, 2022 4:47 PM

People good a programming, but poor code still creating loss in economy

Algorithm Architecture Organization Economics

Need to practice SE before getting good at it
- Coaches integral to success of team in sports and SE

What is SE? Multiplayer multiversion programming

Want to create something that has:
- Predictable
- Repeatable
- Reliable
- High quality
- Cost effective

Programmer: writes code
SW: solves problems
SE > Programming
- Toolchains change, process does not

Rockstar Dev: fallacy that a single developer can be 10x a regular one, who knows everything

Most important thing about SE: Communication
- People quality > experience

CSE 110 Page 1

Lecture 2 - Self Responsibility

Wednesday, September 28, 2022 5:44 PM

Be conservative in what you do, be liberal in what you accept from others

CS Ladder:
Low level: math, binary
0 More subjective
High level: users, graders
0 More predictable

Skill plateau: after reaching "acceptable" performance, more practice doesn’t lead to improvement
- Do something small many times
- Avoid trying to deliver a perfect project

Training the Brain:
- Not about memorizing things, understanding is more important
- Need to maintain good physical and mental health to train
o0 Sleep
O Energy
o Focus
0 Health
o Attitude
- Don't focus too much on good gear, best gear only works if you can use it well
0 But: given the importance of typing, must have god typing skills, good keyboard
- No such thing as maximum productivity
0 Work at your rhythm
Multitasking very inefficient
0 Yak shaving (doing work to get ready to do work) != productivity

Avoiding the pull of shiny new tools
- Simple and complex solutions can solve the same problem
- Promotions awarded to complex solutions
- Sometimes reach for new tools, but often rely on old tools for stability
- No need to switch tools often, try to master before evaluating
- New tools more dangerous than old tools
" Why? More satisfaction from using newer tools, feel like you did something "cool"

Debugging: not just a technical process
- Reasoning, stepping back > hammering out code
- Avoid going straight to stackoverflow

CSE 110 Page 2

Lecture 3 - Group Dynamics

Monday, October 3, 2022 5:00 PM

Knowing all the things mentality
- Brain has limited amount of capacity
- Not helpful for confidence, leads to imposter syndrome

Team dynamics
- Groups evolve and should be self-aware to become high functioning
- Communication is critical
- Team size
0 Too many: overwhelmed by volume
0 Too few: too much work per person
0 Organize under hierarchies to organize management
- Team Composition
0 Specialist trend: each person has unique roles that they excel at
0 Generalist trend: each person can do a little of everything (typically bad)
0 Avoid dominance hierarchy: coding at top with QA and docs at the bottom
- Organization
0 Pathological: Reward driven, dog eat dog system
Bureaucracy: Rules driven, fairness / no specialized treatment
Generative: Too much autonomy can become runaway train
Artifacts can values can indicate what organizational method a group prefers
Conway's law:
" Small Distributed Teams -> Modular Service Architectures
" Large Collocated Teams -> Monolithic Architecture
- 5 Things for Great Teams
0 Psychological safety (paramount) : need to be comfortable taking risks
" Model (behavior)
" Allow for failure
" Avoid blame
" Empathize
" Avoid cliques
Dependability
Structure and clarity
Meaning of work
Impact of work

O
O
O
O

O O O O

Communication
- Signal degradation is the problem in communication
- Learned activity
- Avoid mob programming (bunching up)
- Breaks down when one person breaks down the network

CSE 110 Page 3

Lecture 4 - Group Responsibility

Wednesday, October 5, 2022 5:08 PM

Psychological Safety
- Integrity : ethics with candor and without retaliation
- Innovation : fearless collaborative creativity, shared success
- Inclusion : authentic membership and respect
What can go wrong:
- Group think : fear of ridicule

- Project risk and quality reduction : similar to group think
- Poor retention : equation of $ does not eliminate requirements for satisfaction
Communication

- Each person's prefers different communication methods

- Provide objections and advice when appropriate and when delivered correctly
- Effective teams will have diverse conversation patterns

- Don’t make it personal

- Practice makes better

- Empathize, especially when things go wrong

Dependability

Structure and Clarity
- Alignment over autonomy : pick a direction to all go in
- No correct way to do structure

Meaning and Impact of Work
- Everyone's work contributes to the whole project, NASA janitor helped get US to the moon

Geniuses and Hiding
- Not helpful to bring up how another company does things
- But also don't hide and avoid detection
- Bus factor: number of people who can leave before project is doomed

Managers and Coaches
- Additive: Does work and manage
- Multiplicative: Does less work but allows other people to accomplish more
- Subtractive: Makes things worse

CSE 110 Page 4

Lecture 5 - Recap of Self and Group
Responsibility

Friday, October 7, 2022 5:01 PM

Goofus and Gallant

- Goofus (the one not to be)

0 Tries to code as quickly as possible

Only thinks about what the boss wants
Think doesn’t need to consult other people
Always uses the hottest tool no matter what
Own personal hackathon
10x rockstar and works alone
Doing many things at once
No time to write docs

O Ships code as soon as it runs
- Gallant (the one to try to be)

0 Does some research before diving in
Thinks about what the user needs as well
Talks to end users, team
Pick the best tool for the job and team
Structured and practice following
Part of the team and shares with the team
Focuses on one thing
Writes docs as he does
Ships code after testing it well

O 0O 0O O O O O

O 0O O 0O O O O O

CSE 110 Page 5

Lecture 5 - Problems and Projects

Friday, October 7, 2022 5:10 PM

Problems:
- Simple: puzzles, only one solution, very constrained
- Complicated: problems, may be many solutions, some constraints
- Complex: mess, requirements are not clear, few constraints

Project: CRUD App
- Create
- Read
- Update
- Delete

App is complicated but not complex
- Complicated things can be solved with processes and patterns
- Complex things have unknown things, processes and patterns are not as useful
- Minimize unnecessary solution complexity

Local first software
- Resides on user's device
- But also collaborates with others
- Changes the traditional relationship with the cloud
- Ideals:
0 No waiting for data
Work is not trapped on one device
Network is optional
Seamless collaboration with colleagues
Long now: will work even after support stops
Security and privacy built in by default
0 Users retain ultimate ownership of content
- Self-contained software
O Support maximum capability while offline
0 Sync and store architecture

O O O O O

Project Domain: Personal information management

CSE 110 Page 6

Lecture 6 - Design Engineering
Monday, October 10, 2022 5:02 PM

Project Domain: Personal information management
- Posts
o Tweets, blog posts, etc
- Pictures
- BROAD DOMAIN
- Conduct research and narrow a design

Technical: Core technologies
- Raw Web Platform
o HTML
o Css
o JavaScript
- Does not NEED to be a website, can be desktop app

Architecture: CRUD
- Local first, remote second
- Can add 3rd party destinations later
0 Should create abstraction layer to future proof

Avoid feature explosion. Start simple then increase complexity.
- Plan ahead
- Start early, don’t wait for things to come

Software Activities and Ordering
- Software has life cycle: created, maintained, dead
- Factory thinking: build and stamp out many copies, production engineering
- Design thinking: design and create unique solutions, design engineering
- Bottom up thinking: solve the low level problems before thinking about the top level ideas
- Top down thinking: create the top level ideas before solving the low level problems
- Linear approach: perfect one idea at a time
- Iterative approach: try a few ideas in one iteration, keep improving them over time
- Balance between cost, scope, schedule, quality

CSE 110 Page 7

Lecture 7 - DDD, Pitch, Tensions and Tradeoffs

Wednesday, October 12, 2022 5:00 PM

Domain Driven Design

Must understand domain to design project for specific domain

Pitch requirements

First principles: what does this app accomplish?
Research: look at other projects, etc
User thinking: What are the users? What requirements do they have?
Feature thinking: what features does the project have?
0 Flow charts: show how the app works
0 UML Diagram
0 Event modeling
0 Class charts
Systems architecture: how does the user, app, system, cloud interact?
Wireframes: sketch how the app will look
Organizational structures: github, team, etc
Exploration: create small tests to verify the feasibility of sub components

Tensions and Tradeoffs:

Tradeoff between people, cost, features
Always will be tradeoffs

Avoild appeals to popularity: "everyone is using so it must be the best"

CSE 110 Page 8

Lecture 7 - Process Models

Wednesday, October 12, 2022 5:29 PM

Deadlines:
- Never can finish a project exactly on the anticipated date
- Set project complexity so that you can finish early and use the extra time if needed
- Time pressure: poor code when under pressure

Scope:
- Dietzler's Law
0 80% of what the user wants is fast and easy
0 Next 10% is possible but difficult
o Last 10% is Impossible
- Common people risks:
0 Weak personnel

O Heroics

0 Negative personalities

0 Wishful thinking

o Politics

0 Inappropriate work space

o Lack of buy-in, patrons, etc.
Quality:

- When deciding, avoid focusing on only the outcome. Must consider the value of outcome against risks.

Cone of uncertainty:
Cone of Uncertainty

Process of Examination and Scrutiny

1 N Y O O (N Ol I Y O A) IO | l>
Frerr T TrrrT T T
Doubt Faith Confidence Conviction Certainty

Process types and methodology: want to not be miserable
- Waterfall: Set of steps in linear fashion. Plan then execute then deliver.
- Incremental design: implement one item at a time, without need for an overall goal.
- Agile: Break large problem into small tasks, try each one at a time

CSE 110 Page 9

Midterm 1 Notes

Thursday, October 13, 2022 7:13 PM

Why practice SE?
- Costs of poor software
- Need to focus on problems and users rather than technology

What is SE?
- Multi-Person construction of Multi-Version programs
- SE > programming
- Consists of some technical problems, but mainly social ones

How to best do SE?
- Start at the problem, then work to a solution
- Avoid getting caught in tech details
- Understand SE is a people problem, tools are not the most important factor
- Start with yourself
0 Train the brain
Focus on good health, sleep, energy -> focus and good emotional state
Gear is important, but is not the most important
No need to "grind" or 996
Understand your work rhythms
Understand your work load limit
Confidence is not about how much you know\
Embrace failure

O O 0O o0 o0 o0 O

What to do/ What not to do?
- Don't try to be a 10x/rockstar programmer: a single rockstar can't carry a team to success
- Don't become a -10x programmer: don’t do more harm than good
- Avoid focusing on tools, use the right tool for the task
- Avoid yak shaving: doing work to get ready to do work

On groups
- Communication: becomes difficult as more team members
- Composition: more diversity is better, aim for specialists rather than generalists
- Organization: different organizational methods have their pros and cons
- 5 Things for great teams:
0 Psychological safety (paramount) : need to be comfortable taking risks
= Model (behavior)
= Allow for failure
= Avoid blame
®* Empathize
= Avoid cliques
Dependability
Structure and clarity
Meaning of work
Impact of work

O O O O

Problems:
- Simple: puzzles, only one solution, wvery constrained
- Complicated: problems, may be many solutions, some constraints
- Complex: mess, requirements are not clear, few constraints

Process models: want to not be miserable
- Waterfall: Set of steps in linear fashion. Plan then execute then deliver.
- Incremental design: implement one item at a time, without need for an overall goal.
- Agile: Break large problem into small tasks, try each one at a time

CSE 110 Page 10

Midterm 1 Recap

Monday, October 17, 2022 5:07 PM

- Defining SE
o0 SE >>> Coding
0 Multiplayer multiversion programming
- Developer Outwards
o0 Improve quality of developer outweighs process, tech , tool
0 Improvement from mindset and realistic time/practice
0 10x developer takes time and effort
- Process models
0 Top down: Big Design Up Front
0 Bottom up: No Design Up Front
0 Contextual use
- Engineering Pragmatism
0 Tradeoffs and Iron Triangle
Facing cone of uncertainty
Tools first or solutions first?
Solve the problems we face now, not the problems we might face
Balancing risks and thinking in bet
What we learn may change and finding unchanging truths underneath is true aim

O O O O O

CSE 110 Page 11

Lecture 8 - User Centered Development

Monday, October 17, 2022 5:01 PM

Deciding what to build?
- You?
- Users? Who?
- Both?

The premise
- Understand your users and their needs

UCD: User centered design
- Emphasis on the user during the constructive process

- Figure out what the Users want:
0 You != Your users
0 Users != your designers
0 But, Users can't always know what they need
" More page views, time on site, etc = better | aka line go up
0 Must be employed with extreme caution
o Sampling
" Persona generation
O Beware of personas becoming stereotypes
" user stories
O Agile concept
OAs a I want to in order to
" customer journeys
O Try to understand your software lives in your user's world and is not their whole world
" Observation:
O direct observation
O Indirect observation via analytics
" Interviews

- Document decisions made in Architectural Decision Records

0 Illities: level 0 decisions
" Utilities: does the system do what the user wants
" Availability: is there access to the system
" Performance: access within acceptable time
" Accessibility: able to use the functions
" Usability: able to use the system successfully
" Satisfaction: enjoyment of using the functions

0 User mental model != Your mental model
® System model can be hidden from the user's mental model

CSE 110 Page 12

Lecture 9 - Agile Methodologies

Wednesday, October 19, 2022 4:56 PM

Why Agile?
- Want SE to be flexible and react to changes, to be nimble and quick
- Fix resources and time but be flexible on scope
- Came from poor state of affairs in dev affairs
O Consequence of dot com crash
- Adoption driven partially by pros, but also by social proof, FOMO

What is Agile?

- Agile != speed; Agile is to move properly not necessarily quickly
- Perform iterations of waterfall method many times
- Mindset:

O Flexibility
o Pragmatic
O Openness
- Values:
0 Individuals and interaction over process and tools
0 Working software over comprehensive documentation
" But also make sure to document well they are compliments
o Customer collaboration over contract negotiation
0 Responding to change over following a plan

- Principles:

o Speed, user focus, communication, self-organization, good tech and design, keeping it simple and dealing with change
- Practices:

0 Majority people use Scrum
- Tools:

o Github Issues/Projects, Jira, Trello
" Most tools will do the same things anyways, some more overkill than others
o0 Burn down chart, Kanban board
®* Track the state of things
- Process and Ceremonies:
0 Daily standup : make sure everyone knows what is happening

o Sprint planning : pick an items to work on for that time period

O Sprint Review : show what was accomplished, take stock of where the project is
O Retrospective : reflect on how the last time period went

0 Andon cord : signal to stop everything and figure out what's going wrong

What to do?
- User stories:
O As a _ user I want = to get
o != tasks
- Tasks
o0 Not too small or large
O Need to evaluate the size of each task and distribute accordingly
0 Learn from previous sprints
- Product backlog
o Cumulative list of deliverables
Don't make too many, order by priority
What must we do
What should we do
What could we do
o What won't we do
- Sprints
o Iterations of the process, 1-2 week size

o
[e]
o
[e]

Pros/Cons?
- Use of all techniques are not always employed

CSE 110 Page 13

Lecture 10 - Problem and Solution

Friday, October 21, 2022 4:51 PM
Problem -> Research -> Problem Definition -> Narrowing Down -> Solution
Alignment diagrams: Who/why will a user use the app? How can it be implemented?

Solve problems by understanding the users as real people
- People won't use your project unless it's really useful
- Consider context of users using the software
- Start with the customer experience and work backwards to the technology

Project Artifacts: Personas

- Fictional character representing what the user needs, how they will benefit
- Try not to create stereotypes

Project Artifacts: Journey maps
- Journey of how the user gets through the experience

Project Artifacts: User stories
- As a I want to so that

- Design for the purpose of addressing user stories

Tools
- Miro: Drawing and design tool, can create diagrams and flowcharts.
- Git/Github: Git is file tracker, Github shares git repos online
- IDE (VSCode): Features vs speed
- Code grading

CSE 110 Page 14

Lecture 11 - Requirements and Planning

Monday, October 24, 2022 5:05 PM

Need to have consideration for the libraries and dependencies that we install

Planning: significantly cheaper than coding
- Plan from general to specific
- Requirements > code
- Want to code right away, but need to plan first

Requirements

1) Who - the actor

2) What - the action that the actor takes

3) When/Where - state of the system and actor's relation to it
4) Why - goal of the actor

5) How - means the action is done

Good Requirements
- Measurable and precise requirements
- Must be quantitative things that can be measures

Requirements to Specifications
- How formal?
0 Depends on the user, governments will be more formal
- Create flowcharts / state machines?
0 Could be done by flow charts
- UML
0 Formal way to describe specifications
0 Not widely used

1) Wireframing: Design user thinking, with some state logic
2) Storyboarding: showing how the user flows through the app

Key design principles:
- Less is more
- Users don't read

- When existing expectations are not enough need guidance

Avoid bricklaying, be an architect

CSE 110 Page 15

Lecture 12 - Build Dev 1: CI/CD

Wednesday, October 26, 2022 5:02 PM

Attention to detail at the beginning more impactful than attention to detail at the end

Idea: create a software factory
- Create parts individually and verifying them and then deploying for testing or release
- Factory = tools (CI pipeline) and processes (checklists, human procedures)
- Manufacture = an instance of running code through the factory to make evaluation

Faster quality factory means figuring out problems faster and producing new attempts
- Make sure the order of steps will fail as early as possible
- Do shorter steps before longer steps
- Do important things first

Build automation

- Creating a process which creates the working application quickly
Continuous Integration

- Practice of creating many internal builds to test new features iteratively
Continuous Deployment

- Practice of continuous deployment of final releases

- Always have working deployable software

Technologies
- Build pipelines will depend on
0 Dependencies
0 Needs of the products

Example CI in various incremental steps:

1) Git push -> Deploy

2) Git push -> Unit tests -> Deploy

3) Git push -> Style enforcement -> Unit tests -> Deploy

4) Git push -> Style enforcement -> Unit tests -> Minimization -> Deploy

Steps:
- Start with simple HTML page to practice pushing, issues, merging, deploying
- Explore each element before work
o0 Throw that code away when done
0 Avoid social proof (don't just take google at its word)
0 Do hands on work rather than assess "feels"
- Work on each component type independently
- Work on integration of pieces
- Make sure everything is documented so anyone can run it

CSE 110 Page 16

Lecture 13 - Architecture 1
Friday, October 28, 2022 4:57 PM

Def: Fundamental organization of a system, component's relationships to each other and the environment
- Architecture s important things, whatever that is
- Stuff that's hard to change later
- Theory or design about how the system will be implemented
0 Breaking the app into pieces and how they relate to each other
o Affects user related things like: Performance, availability, security, maintainability, extensibility

CSE 110 Page 17

Lecture 14 - Good Coding

Monday, October 31, 2022 5:00 PM

What does good code look like?
- Readable

Modular

Simple

Does what needs to be done

Just enough dependencies

SSoT:

Single Source of Truth

- Where to find the answer to all questions?
- Keep your plans on site
- Documentation

Simplicity
Generally less is more

Complex code may be more brittle

0 May not survive time
Always be cleaning, fixing bugs,
Adapt and grow but guard against trendiness

Repos
Max directory size: 10-20

Clear
Clear
Clear
Prune
Don't

directory naming
directory hierarchy
directory file grouping
branches when done

let issues pile up

Actually evaluate pull requests

CSE 110 Page 18

implementing TODOs,

paying down technical debt

Lecture 15 - Good Coding 2

Wednesday, November 2, 2022 5:11 PM

HTML
- Use consistent style
- Validate the markup: HTML is very permissive with problematic code, need to validate markup to ensure correctness
- Aim for valid markup
- Use semantic markup: use <nav> over <div class="nav">

CSE 110 Page 19

Lecture 16 - Architecture 2

Friday, November 4, 2022 5:00 PM
How to address big decisions?

Ex: What kind of app?
- WebAPP?
0 Simgle page?
0 Multi page?
- PWA?
- ElectronJds?
- Cordova?
- Chrome Extension?

Architecture Decision Record: Captures key choices and why

Models
- Model, View, Controller:
0 Model: How the application is presented
0 View: How the user interacts with the application
0 Controller: How the application functions below the hood
- Content, Structure, Presentation, Logic

Progressive Enhancement:

- Move from HTML to CSS to JS

- Degrades to standard site if JS or CSS is disabled
Graceful Degradation:

- Move from JS to CSS to HTML

- Prevents users from using app if JS is disabled
Microservice: break app into many smaller components

Monolith: keep application as one large component

Architecture Astronauts: trying to solve the template for many problems rather than the exact problem

CSE 110 Page 20

Lecture 17 - Good Coding 3

Monday, November 7, 2022 5:01 PM

JavaScript
- Not just for web apps
- Can be run in any host environment including servers,

Types:
- Primitives: int, bool, string, undefined, null
- Composite/Reference: Object, Array*, Function

Style:
- Keep it consistent
- Use comments when code needs explanation
- Use comments as annotations (TODO, HACK, XXX)

CSE 110 Page 21

desktop,

mobile

Lecture 18 - Testing and Quality

Wednesday, November 9, 2022 5:00 PM

What does quality mean?

Works
0 Bug free?
Efficient
O Memory
o CPU
0 Load time
O Response time
0 RAIL: response, animation, idle, load
Easy to use
User friendly

How do we get quality?

Cannot prevent users from destroying the software
More dependencies means more complexities and more bugs
Testing pyramid
0 Many small tests for each part
0 Less tests for larger parts
0 Top level testing may be human
0 Unit -> Service/API -> UI
Use CI to create a quick way to run tests
0 Unit testing: write automated tests to check expected vs results
Code Coverage
o0 Trivial tests passing means little
Code reviews: can't be too brief but not harsh, needs to be constructive
Evaluate third party code, be careful using it
Avoid General Browser Stats
0 Too many possible browsers and versions
Load testing
0 Test how much traffic the app and servers can handle and determine fail points
User acceptance and usability
0 You have to like your own app
0 Friends have to like your app
0 Unfriendliness should like your app from a user point of view
o Public ..

Things will fall apart

Assume the worst, don’t hope for the best

Test Driven Development

Create tests before implementation
Tests should fail first and then be patched to pass

Behavior Driven Development

Tends to have more English-1like assertions
May be more friendly to QA or business stake holders
expect (..) .toBe (...)

CSE 110 Page 22

Lecture 19 -

Monday, November 14, 2022 5:03 PM

CSE 110 Page 23

Midterm 2 Review

Wednesday, November 16, 2022 5:01 PM

- UCD: User centered design
o0 Define: putting user at the center of design
0 Laws and tips:
" You are not the user
" Users can't be your designer
o Techniques
" Create personas, user stories
o Artifacts
® Personas
" User stories: As a <blank> I want to <do blank> in order to <blank>
0 Illities: broad nonfunctional characteristics
" Determines how users feel
- Agile
0 Values: Communication, Feedback, Simplicity, Courage
Daily Standup: Quick meeting of what you did and what you need to do
Sprint: time box to conduct work, can be 1 - 6 weeks
Sprint planning : start of sprint meeting to pick items to work on
Story points: generalize time estimates to categories (S, M, L)
Sprint review: end of sprint meeting to show and tell work
Retrospective: A retrospective meeting allows us to look back at our previous sprint and discuss the high level
issues of Agile and what went right and wrong
- Development
o Take something small and roll it uphill, don’t make big thing and fix
o CI/CD pipeline: factory to stamp out software pieces
" Many small steps quickly
" Feel the hate before you automate: do step manually before deciding to automate
0 Avoid spreading: keep things together
Teams should code as one: code owned by everyone
o Play styles
" Mobbing: everyone working on the same code together, great at start or in emergencies
" Pair: two people work together, code review as we go and teaching people as you go
" Solo: working alone, need self-discipline to follow team rules
0 Tasks: break big tasks down until it’s the right size
0 Definition of Done: must define all aspects of task, done iff they are all addressed
o Document as you go
- Requirements and Specifications
0 Planning is cheaper and faster than coding
0 Need to get requirements from different people
0 Visual representations: diagram down levels
o Technical debt: buildup of not doing work the right way
" Must document major decisions in ADRs
" Prevent hindsight doubt
0 Specifications depends on the project
0 Use dependencies with caution, evaluate before use
- Testing and Quality
o0 Test pieces -> test integration -> test users
O TDD: test driven development, write tests then write the implementation
0 BDD: behavior driven development, write code to match behavior which better matches user expectations
O Acceptance testing: do people use the app?

O 0O 0O O O O

e}

CSE 110 Page 24

